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Abstract: Junior college students often experience difficulty with mathematical 
induction. In this study, the data collection involved the use of proof-writing tasks in 
questionnaires followed by interviews of selected students. With respect to students’ 
performance, they had difficulty with questions that involved formulating a 
conjecture and then proving it using mathematical induction. The junior college 
students had significant difficulties with the conceptual, procedural and technical 
aspects of the proof technique. The inability to complete a proof was also attributed 
to a lack of specific mathematical content knowledge. From the study, some good 
mathematical skills exhibited by good students were observed. 
 

Introduction 
Mathematical induction is part of the mathematics syllabus required for the 
Singapore-Cambridge General Certificate in Education Advanced Level 
Examinations. Even after the content reduction by the Ministry of Education, 
Singapore, mathematical induction is still relevant in the revised syllabus for year 
2000 and beyond (University of Cambridge Local Examinations Syndicate, 2000). 
For 16 to 17 year olds in the junior colleges, this topic is usually covered in their 
first year. Mathematical induction has always been a topic these students find 
difficult to understand. Teachers also experience difficulty explaining the concept of 
mathematical induction to students. Teachers have observed from tutorials, tests and 
examinations that students' ability to do problems in mathematical induction 
depends on the types of identities that are to be proved (Baker, 1996; Dubinsky, 
1989). It is the intention of this study to focus on such difficulties. 
 
The following quote highlights the importance of mathematical induction in the 
school curriculum: "A third goal is to increase attention to proof by mathematical 
induction, the most prominent proof technique in discrete mathematics" (National 
Council of Teachers of Mathematics (NCTM), 1989, p. 143). When taught well, 
mathematical induction can improve students' understanding of these methods. In 
Principles and Standards for School Mathematics, NCTM further recommended 
that "since iteration and recursive methods are increasingly common, students 

 
1 This study is part of a thesis submitted to the Nanyang Technological University in partial fulfillment of 
the requirement for the Degree Master of Education (Mathematics Education).  With appreciation to my 
thesis supervisor: Dr. Douglas Edge. 
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should learn that certain types of results are proved using the technique of 
mathematical induction" (NCTM, 2000, p. 345). 
 
Previous researchers (Avital & Libeskind, 1978; Dubinsky, 1986, 1989; Ernest, 
1984; Fischbein & Engel, 1989; Foret, 1998) agreed that mathematical induction is 
a very difficult concept to master. Avital and Libeskind (1978) described in detail 
the pedagogical problems and misconceptions which occurred while students 
learned mathematical induction. The kinds of difficulties they highlighted included 
(a) conceptual, (b) mathematical, and (c) technical where conceptual difficulties 
meant difficulties related to the implication from Pk to Pk+1 and difficulty getting 
used to the transition from k to k+1, mathematical difficulties generally meant 
difficulties related to basis case not equal to one, and technical difficulties to 
difficulties related to the interpretation of the induction step applied in a particular 
problem and difficulties in the algebraic manipulations involved in proving the 
induction step.  
 
Ernest (1984) also observed that many students had difficulties in producing correct 
proofs by the method of mathematical induction. His analysis of the topic of 
mathematical induction was in terms of behavioural skills and conceptual 
understanding. The three behavioural skills analysed were (a) the ability to prove 
the basis of the induction, (b) the ability to prove the induction step, and (c) the 
ability to present a proof by mathematical induction in the correct form. The two 
major conceptual clusters revealed were (a) defined properties of natural numbers 
and functions and (b) recurrence and the ordering of the natural numbers. Dubinsky 
(1989) taught mathematical induction using reflective abstraction to 24 students 
from the University of California at Berkeley and 16 students from Clarkson 
University. The results showed that the students performed very well for questions 
involving summation and algebraic identity. However, the question that involved 
formulating a conjecture and then proving it was one of the most difficult for the 
students. 
 
The teaching of mathematical induction and students’ learning difficulties in this 
topic are still attracting attention from researchers (Allen, 2001; Baker, 1996; 
Movshovitz-Hadar, 1993; Murakami, 2000). Baker (1996) investigated 40 high 
school and 13 college students as they began to learn mathematical induction. 
Students provided data in the form of proof-writing and proof-analysis tasks 
followed by interviews to clarify their responses. Baker concluded that many 
students focused on the procedural aspects of mathematical induction far more often 
than on conceptual aspects. From that study, Baker suggested that specific 
mathematical content knowledge like summation symbol, factorial symbol, 
definition of variable and algebra played a significant role in difficulties.  
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Therefore, based on this background (and as no Singapore-based local research has 
been done based on the syllabus required for the Singapore-Cambridge General 
Certificate in Education Advanced Level Examinations to identify the types of 
questions on mathematical induction that Singapore students can do, the kinds of 
questions where they tend to falter, and the reasons behind their weaknesses), it was 
the purpose of this study to investigate the types of difficulties Singapore students 
face in the learning of mathematical induction. 
 
Given the wide range of usage of terms like conceptual, mathematical and technical 
difficulties by different authors, there is considerable variation in the meaning of 
these terms. For this study, the following framework of understanding of terms was 
adopted. Difficulties were classified into conceptual, procedural and technical. 
Conceptual difficulties refer to the understanding of the method of proof by 
mathematical induction, the relationship between inductive hypothesis and 
inductive step and the need for the basis case. Procedural difficulties refer to 
difficulties encountered when basis case does not start at n=1 and giving the wrong 
proposition statement. Technical difficulties refer to difficulties in simplifying 
algebraic fractions and incorrect substitution of variables. As well, very often, the 
inability to complete a proof by mathematical induction could be due to a lack of 
specific mathematical content knowledge by the students. A separate category on 
lack of mathematical content knowledge like indices, sigma notation sequence and 
factorial was created.  
 
The research questions were: 
1. What is the relationship between students' performance in mathematical 
induction and the types of identities to be proved? 
2. What are the kinds of conceptual, procedural and technical difficulties that 
students encounter when they learn mathematical induction? 
 

Research Methodology 
Subjects 
This study was conducted in the second half of 2000 in a junior college located in 
the eastern part of Singapore with a total student population of around 1600. Eighty-
six year one students (17 years of age) answered this questionnaire. These students 
were picked at random from students taking double mathematics (both Further 
Mathematics and Mathematics 'C'), Science students taking Mathematics 'C' only, 
and Arts students taking Mathematics 'C' only. The mathematics backgrounds of 
these students thus differed widely. From the data collected, not all of the 86 
students attempted all the questions in the questionnaire. Those questionnaires with 
certain questions not attempted or with very short and mostly incomplete workings 
were discarded. As a result, only 30 questionnaires were selected for data analysis. 
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Thus the sample consists of the best and most conscientious students of the cohort. 
These selected 30 students had a mean L1R5 of 12.93 with a range of 8 to 16. Their 
average grades for Elementary Mathematics and Additional Mathematics at General 
Certificate in Education Ordinary Level were 1.47 and 2.50 respectively. 
 
Instrumentation 
The proof-writing questionnaire was developed by examining various sources: 

(a)  Test items from past research articles, 
(b) Past-year questions from General Certificate in Education Advanced Level 

Examinations, and 
(c) Past-year Preliminary Examination questions from various junior colleges. 

 
Based on the various types of identities tested in past General Certificate in 
Education Advanced Level Examinations, the questionnaire comprised five proof-
writing questions on the identities involving (a) indices, (b) the summation symbol, 
(c) sequences, (d) differentiation of one variable and factorial symbol, and (e) 
formulation and subsequent proof of a conjecture. The questions in the 
questionnaire are reproduced in Table 1. The summation sign appeared in both 
questions 1 and 2 and sequence was used in both questions 3 and 5. However, 
labeling of the five questions related to the anticipated difficulties encountered by 
students.  
 
Data collection 
Data collection involved two aspects: a questionnaire and interviews. The 
questionnaire consisting of five proof-writing questions was administered to the 
subjects under examination conditions. They were not told in advance about the 
questionnaire. The subjects did the questionnaire during one of their tutorial 
sessions in a classroom and were given 45 minutes to complete it. The duration of 
the test was within one tutorial session of 45 minutes to parallel a typical tutorial 
session activity.   
  
Based on the questionnaires, seven students were selected for interviews to clarify 
and elaborate on their written answers. Their selection was determined as follows: 
(a) lowest mark in any one question in proof-writing questionnaire, (b) highest mark 
in any one question in proof-writing questionnaire, and (c) answers that were 
ambiguous or intriguing. All the interviews were conducted in an empty classroom. 
Individual interviews were audio taped for subsequent analysis. Before the 
commencement of the interview, subjects were given time to look through their 
earlier written responses. The subjects had no idea whether their written proofs were 
correct or not as only the codes were given. During the interviews, the subjects were 
not informed if their replies were correct. 
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Table 1 
Questionnaire on mathematical induction 

1.  Show by induction that, for every positive integer , n
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    Find a formula for  and prove it by mathematical induction. nx

 
Scoring and data analysis 
Written answers were analyzed in two categories: 
(a) Students’ performance in different proof-writing tasks, and 
(b) Students’ difficulties with this proof technique, namely: conceptual, procedural 
and technical difficulties. 
 
Student performance for the proof-writing tasks was evaluated with a marking 
scheme given in Table 2. Each of the five questions was scored from 0 through 10. 
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The average scores of the 30 students for each of the five questions was tabulated. A 
lower score for a question represented a higher level of difficulty for that type of 
question. The five scores were ranked in descending order to identify the students’ 
performance in different proof-writing tasks.  
 
The questionnaires were then analyzed for student errors and difficulties using the 
proposed framework in terms of conceptual, procedural and technical difficulties. 
Number codes were given to different learning difficulties. The frequency of 
occurrence and percentages for each category of difficulties were calculated. 

 
 

Results and Related Discussion 
Students' performance 
The first research question which focused on the relationship between students’ 
performance in mathematical induction and the types of identities to be proved was 
investigated. This relationship is illustrated in Table 3. Students in this study did 
well with proof involving indices and summation. From Table 3, the average score 
of 30 students in proof involving indices (Question 1) was 5.7 out of possible 10.  
 
Table 2 
Marking scheme for proof-writing tasks 

Descriptions Mark 

• The statement to be proved to be represented by some notation 
as Pn. 

1 

• Clear verification that the result is true for the appropriate initial 
value. 

1 

• Clear statement of the general case that is being assumed 
(inductive hypothesis). 

1 

• A statement of the result (Pk+1) that is going to be deduced 
before the main algebraic part of the proof in the induction step 
begins. 

1 

• Algebra in inductive step must include enough working to show 
clearly that the expected result has in fact been properly derived. 

5 

• Conclusion to round off the proof.   
 

1 
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Table 3 
Types of questions and students’ score. (Maximum score = 10. Sample size = 30) 

Question Label Mean Score Standard Deviation 

1 Indices 5.70 2.49 
2 Summation 5.67 3.69 
3 Sequences 5.50 2.69 
4 Differentiation and 

factorial 
5.30 3.20 

5 Formulate a conjecture 

 
 

0.80 2.22 

Proofs involving sequences, differentiation and factorial symbol were not as easy 
for the students. The most difficult question involved formulating a conjecture and 
then proving it using mathematical induction. From Table 3, only an average score 
of 0.8 was recorded for question 5.  
 
From the proof-writing tasks, it can be observed that students' success in the 
induction step depended on their ability to write down the key equation that linked 
the propositions Pk to Pk+1. The key equation in each of the five questions is 
provided in Table 4.  From Table 4, questions 3 and 4 were difficult because the 
way to obtain the linking equations to prove the induction steps was different from 
that in questions 1 and 2. Questions 1 and 2 involve summation signs. To link Pk to 
Pk+1, students must obtain the (k+1)th term. They were trained to substitute the 
variable r in the general term in the sigma notation by k+1. The induction step for 
questions 1 and 2 involved adding expression in Pk to (k+1)th term. The students 
also presupposed the same method in question 3 and question 4 which involved 
sequences and differentiation. In question 3, three students wrote down the equation 
that linked Pk to Pk+1 as 11 ++ += kkk aaa . The (k+1)th term was . They 

substituted  as 

1+ka

ka ( ) ka k
k −+= 13

2
1  using the inductive hypothesis. The term  

was replaced by the iteration formula:

1+ka

2231 −+=+ kaa kk . Part of a student’s 
working for question 3 is reproduced in Written Sample 1. 
 
Written Sample 1: TYY  

Assume that  is true for some integers  kP 1≥k

  i.e. ( ) ka k
k −+= 13

2
1  
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Table 4 
Table showing the key equation that links Pk to Pk+1

Question Key equation that links Pk to Pk+1
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Written Sample 1: TYY  (con’d) 

Want to prove that  is true 1+kP

i.e.       ( ) )1(13
2
1 1

1 +−+= +
+ ka k

k  

Given that    2231 −+=+ kaa kk  

Then,    = 1++ kk aa ( ) kk −+13
2
1  + 223 −+ kak  

 
The same difficulty of presupposing that ak+1 = ak + ak+1 was also revealed during an 
interview with a student (QPB) on question 3, reproduced in Vignette 1. 
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Vignette 1: QPB 
I: How could you show that Pk is true implies Pk+1 is true? 
QPB:  I used the equation ak+1 = ak + ak+1. 
I: Why did you use this equation ak+1 = ak + ak+1? 
QPB: ak+1 is ak plus the (k+1)th term. 
I: Do you mean that your (k+1)th term is ak+1? 
QPB: Yes. 
I: Did you realize that ak+1 appeared on both sides of your equation? 

 QPB: ... 
 
Table 5 records the number of students, by question, who could not write down the 
key equation. The table also shows the number of students who were able to write 
down the equation that provided the link but were unable to complete the induction 
step. From Table 5, in question 4, 15 out of 30 students had difficulty writing down 
the key equation and 7 students could link but could not complete the induction 
step. Questions 4 and 5 seemed to be the most difficult questions. As for question 4, 

6.7%, or 2 out of 30, of the students had the misconception that
dx
dy

dx
yd

dx
yd

k

k

k

k
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+

+

1

1
.  

 
Table 5 
Student’s performance based on ability to write down the key equation that links Pk 
to Pk+1

Question 1 2 3 4 5 

Cannot link Pk to Pk+1 3 7 6 15 27 
Can link but cannot complete the 
induction step 

15 12 14 7 1 

 
The operation is not addition but a process of differentiation. Part of a student’s 
working for question 4 is reproduced in Written Sample 2. 
 
Written Sample 2: OHS  
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Assume that  is true for some  kP +Ζ∈k



46                                       Mastery of mathematical induction among junior college students-  
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, also surfaced during an interview 

with a student (HSY) on question 4, reproduced in Vignette 2. 
 
Vignette 2: HSY 

I: How did you show that Pk is true implies Pk+1 is true? 

HSY:  I used the equation 
dx
dy

dx
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dx
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k

k
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I: Why did you use this equation? 
HSY: ... Pk+1 is Pk plus (k+1)th term. 
I: Do you mean that your (k+1)th term is dy

dx
? 

HSY:  ... I think so. 
 

Types of difficulties 
The second research question investigated the kinds of learning difficulties that 
students encounter when they learn mathematical induction. Critically, the junior 
college students had significant difficulties with the proof technique, either 
conceptually, procedurally or technically. A primary source of difficulty was 
attributed to a lack of mathematical content knowledge. Difficulties classified under 
conceptual and procedural are related specifically to mathematical induction. 
Technical difficulties and lack of content knowledge are related to prerequisite 
skills. A list of difficulties experienced by students is shown in Table 6. For 
example, under conceptual difficulties, five out of 30 students in the study assumed 
that inductive hypothesis is true for all k. In Written Sample 3, part of a student’s 
working is shown. 
 
Written Sample 3: PKK  

Assume that Pk  is true for all .  1≥k
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The correct form should be to assume that Pk is true for some . If the students 
assumed that the proposition was true for all integer values of k, then there was no 
need to prove the induction step. Before proving, the proposition was already 
assumed true. Students were inclined to consider the absolute truth value of the 
inductive hypothesis. Fischbein and Engel (1989) pointed out that this difficulty lies 
in the students having to build on the entire segment of the induction step based on 
an inductive hypothesis which, itself, has not been proven. 

1≥k

 
Table 6 
Significant types of students’ learning difficulties 

Difficulties Descriptions N 
5 • Inductive hypothesis is true for all k 

• Unable to prove induction step  1+⇒ kk PP
Conceptual 
difficulties 

• Insufficient working in proving the basis case 
8 
2 

10 • Basis case is not n=1 Procedural 
difficulties • Proposition Pn is false 1 

8 • Negative sign in front of algebraic fraction 
• Sigma notation  

Technical 
difficulties 

• Wrong substitution 
5 
1 

• Indices 4 
• Sigma notation 3 
• Sequences notation 5 
• Differentiate a factorial which is a constant 

Lack of 
mathematical 
content 
knowledge 

• Factorial symbol 
5 
2 

N = number of students out of 30. 

Procedurally, ten of the students in the study encountered difficulty when the basis 
case was not n=1. Question 2 was purposely selected to test this when the basis case 
was n=0. One third of the students still began the proof with the basis case of n=1. 
They were thrown into a “state of disequilibrium” when the value evaluated at n=1 
for left-hand side and right-hand side were not equal. An interview with a student 
(YAL) shown in Vignette 3 also revealed this uncertainty. 

Vignette 3: YAL 
I: You proved the basis case using n=1 and your LHS=RHS. Your 

LHS is 
48
1 . Please show me that your RHS is 

48
1 . 
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YAL: Actually, my RHS=
80
7 .  

I: That means your proof of LHS is not equal to RHS. 
YAL: Yes. But I know I am supposed to show that LHS=RHS. 
I: Then what went wrong? 
YAL: ... 

 
For technical difficulty, eight out of 30 students, or 26.7%, made mistakes 
simplifying an algebraic fraction with a negative sign in front. This is evident in the 
induction step for question 1. Part of a student’s working is reproduced in Written 
Sample 4. 
 
Written Sample 4: TKY 

Assume that  is true for some integers . kP 1≥k
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The sign in the bracket should be negative. The students knew that (-)(-) gives a (+) 
sign. They also knew that something was wrong when the simplification did not 
reach the target expression in the proposition Pk+1. However, the high occurrence of 
such a mistake may signal the need for other techniques to simplify negative 
algebraic fractions.  
 
The inability to complete a proof was also due to a lack of specific mathematical 
content knowledge. In many cases, students were unable to operate with symbols 
and to use algebraic procedures. The ones that appeared in the proof-writing test 
were a subset of what the students might have mastered in secondary schools and in 
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junior college. Five students out of 30 were unable to differentiate ( ) ( )
( ) 11

!1
++

−
k

k

x
k  with 

respect to x. The problem lies in the variable that they need to differentiate. From an 
interview with a student (LJX) on question 4, the student thought that  was a 
variable and thus differentiated with respect to . A portion of the interview from 
LJX is reproduced in Vignette 4. The student could find the derivative of (  
with respect to k. However, k is a constant. 

k
k

)k1−

Vignette 4: LJX 

I: Please explain to me how you perform ( )
( ) 1

1 !
1

k

k

kd
dx x +

−

+
. 

LJX: I differentiate ( )k1−  to get ( ) 11 kk −− . Then I have to 
differentiate k!. But I don’t know how to differentiate k!. 

I: Do you differentiate with respect to x or k? 
LJX: I see k in ( , so I differentiate the k. )k1−

 
From this study, good students were observed to have acquired the following good 
mathematical skills: 

• Identify common factors 
• Use commutative law to rearrange algebraic fractions 
• Simplify target expression in Pk+1 
• Isolate the constants 
• Observe for pattern 

 
 

In the induction step for question 2, the good students realised that ( )( )534
1
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appeared in the target expression in Pk+1. This term was left untouched. Instead of 
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] , students interchanged positions of the two 

terms using laws of commutativity to put the negative algebraic fraction behind. 
Part of a student’s working for question 2 is reproduced in Written Sample 5. 
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Written Sample 5: WYJ 
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Instead of just writing down the target expression, good students also simplified the 
expression. Once the simplified expression appeared in the proof, the students could 
in a way trace backwards to the target expression in Pk+1. A sample of a student’s 
working for question 3 is reproduced in Written Sample 6. The target expression 
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Written Sample 6: LMP 
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Implications for Teaching 
The results of this study suggest some implications for teaching. Most students had 
difficulties with proofs involving differentiation and sequences. For differentiation, 
students need to acquire the concept of higher derivative in the general sense. They 
need to know that the (k+1)th derivative of a function is obtained by differentiating 
the kth derivative of the function one more time. For sequences, students need to 
understand the purpose of the iteration formula that generates the next consecutive 
term. 
 
The most difficult question involved formulating a conjecture and then proving it by 
mathematical induction. Observing a pattern is important in formulating the 
conjecture. Wiscamb (1970) suggested that students should discover the identities 
for themselves before proving them by mathematical induction. This proposal was 
supported by Avital and Hansen (1976) who proposed the teaching of mathematical 
induction through inductive investigation and student involvement. Van Schalkwijk, 
Bergen and Van Rooij (2001) also advocated investigations as learning 
environments for proving. 
 
Another problem that frequently arose during the inductive step of the proof was 
that students thought that they were assuming what they were actually trying to 
prove. The instructional treatment could probably be improved by developing more 
effective techniques for inducing the reflective abstractions described by Dubinsky 
and Lewin (1986).  The three schemas that are assumed to be present when students 
begin to study induction are method of proof, function and logical necessity. For 
example, suppose P1 is true. An evaluation of implication-valued function Pn ⇒ 
Pn+1 at n=1 obtains . Applying modus ponens and the fact that P21 PP ⇒ 1 is true 
yields P2 is true. The evaluation process with n=2 yields . This is repeated 
ad infinitum. 

32 PP ⇒

 
Students need to understand the relationship between the basis case, inductive 
hypothesis and induction step of mathematical induction. They need to realize why 
the proof is weak by considering only the inductive step (Pk ⇒ Pk+1) or the basis 
case alone. Concept images of mathematical induction have been presented by 
numerous authors to illustrate the relationship between the method of induction and 
the well ordering of the natural numbers (Ernest, 1984; Lowenthal & Eisenberg, 
1992; Scott, 2000).  These analogies included: 
• the knocking down of a long line of dominoes, 
• the ascent of a ladder, step by step, and 
• the entry of a princess into all the locked rooms of a palace, given that she has 

the key to the first room and that each room contains the key to the next room. 
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Take, for example, in the knocking down of dominoes, a domino will fall if the 
preceding domino falls (Pk ⇒ Pk+1). However, all the dominoes will not fall (Pn is 
not true yet) unless the first domino falls (P1 is true). 
 
It is a common technique used in lectures that only correct solutions are given. 
Proof-analysis tasks may be incorporated in lectures and even in tests and 
examinations to test students’ understanding. An explanation of errors or showing 
that such an approach would lead to errors may help students to understand the topic 
better. It may also alert the students to misconceptions, thus avoiding them. Further, 
both proof analysis and teacher demonstrated examples can help make up for a lack 
of student generated examples.   
 
Since proof by mathematical induction requires sufficient mathematical content 
knowledge to be successful, teachers should not assume mastery of content 
knowledge when demonstrating examples or constructing examinations. 
Szombathelyi and Szarvas (1998) agreed that students must learn how to use 
symbols and how to express themselves in the language of mathematics when 
proving a statement by induction.  Notations like summation, factorial symbols and 
sequences must be formally introduced and well taught before the introduction of 
mathematical induction. Initially, students need to see that 

.  Students also need to know which is 

constant and which is a variable: k or n or r? For questions involving differentiation, 

students need to know that 
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dx
d  means ‘differentiate with respect to x’. To improve 

on the lack of content knowledge, in spite of the additional time required, remedial 
worksheets to supplement textbook exercises may be designed to improve on 
manipulation of sigma notation, factorial symbol and algebraic identities. The good 
mathematical skills exhibited by good students should also be taught to other 
students so as to minimize errors in mathematical induction.  
 
The ultimate goal is that proof by mathematical induction becomes an integrated 
part of a students' repertoire and that students are more or less able to decide when it 
might be useful to apply it in a given situation without having been instructed 
beforehand to "prove by mathematical induction". 
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